Depo Randevu Yöntemi
Depo Randevu Yöntemi
Araçlar düzenlenirken ilk müşteriden sanal depoya kadar geçen süre kendisine en yakın fiili depoya kadardır. İlk müşteri kendisine en yakın depoya atanırsa, bazı depolarda düzenlenen araç sayısı limitini aşabilir. Bu nedenle aracın tekrar depoya atanması gerekir.
MDVRP için, minimum akış algoritması kullanılarak bir depo atama yöntemi tanıtılmıştır. FTMDVRP için minimum akış algoritması ile çözülemez. Bu sorunu çözmek için zaman zaman maksimum akış algoritması kullanılır.
Her şeyden önce, bir ağ grafiği oluşturulmalıdır. Nokta s başlangıç noktasını temsil eder. t noktası sonlandırma noktasını temsil eder. i = 1, 2,…, M noktası i deposunu temsil eder. j = 1, 2,…, m noktası j aracını temsil eder. Yaylar başlangıç noktasından her bir depoya eklenir.
s noktasından depoya giden arkın kapasitesi, bu deponun sahip olduğu araç sayısı ve uzunluğu 0’dır; Arklar her araca depolardan eklenir. Depolardan her araca giden arkın kapasitesi 1, uzunluğu aracın müşterilerine hizmet verdiği süredir; Araçlardan sonlandırma noktasına yaylar eklenir. Araçlardan bitiş noktasına kadar olan arkın kapasitesi 1, uzunluğu 0’dır.
Örneğin 2 adet a, b deposu vardır. Her depoda iki araç vardır. 15 müşteri var. Sıraları 5-4-8-1-3-9-10-7-2-6 şeklindedir. tij, i’den j’ye kadar geçen süreyi temsil eder.
Bu müşteriler, geliştirilmiş split algoritma ile 4 gruba ayrılır ve her müşteri grubuna bir araç hizmet verir, böylece bu 4 aracın rotası 0-5-4-8, 0-1-3, 0-9- şeklindedir. 10, 0-7-2-6. Böylece ağ grafiği yapılandırılmıştır.
Kapasite limiti tam sayıdır, dolayısıyla uygun akış integral akıştır. Akış değeri m olduğunda, araçlardan bitiş noktasına olan arkın akış değeri 1 olmalıdır. Depodan araca olan arkın akış değeri 1 veya 0’dır ve her aracın tam olarak akış değeri 1 olan yalnızca bir yayı vardır. i deposundan j aracına giden arkın akış değeri 1’dir, daha sonra i aracı j deposuna tahsis edilir.
USS Yönetim Sistemi
uss yönetim e-nabız
USS Sağlık NET 2
USS Yönetim giriş
USS Sağlık
Ortak Giriş
Yeni EBYS giriş
Sağlık E-Posta
Depo randevusu çözümü var. Bitiş süresi, akış değeri 1 olan yayların en uzun uzunluğudur. Amaç, akış değeri m olmak koşuluyla bu bitiş süresini en aza indirmektir.
Adım 1: Akış değeri m olan uygun akışı hesaplayın. Daha sonra bu uygun akışta yayın en uzun uzunluğu elde edilir, l olarak not edilir. Uzunluğu l’den büyük veya eşit olan yaylar silinir. Böylece yeni bir ağ grafiği elde edilir.
Adım 2: Yeni ağ grafiğinin maksimum akışını hesaplayın. Maksimum akış m ise, adım 1’e gidin. Aksi takdirde, son ağ grafiğindeki akış değeri m olan uygun akış, depo ataması için en iyi çözümdür. En kısa bitiş süresi l’dir.
Görüldüğü gibi, maksimum akış 4’tür. En uzun ark defalarca silinir. 60,55,55,50’dir. Daha sonra maksimum akışı 3 olan ağ grafiği elde edilebilir. Uzunluğu 50 olan yay silinmediğinde ağ grafiğindeki uygun akış depo ataması için en iyi çözümdür. Bu ağ grafiğini hesaplamak için maksimum akış algoritmasını kullanarak, en iyi depo atama çözümü elde edilebilir: a-1-3, a-7-2-6, b-5-4-8, b-9-10. Kısa bitiş süresi 50’dir.
Genel araç rotalama problemlerinde araç ve depo sayısı az olduğu için ağ grafiği ölçek olarak büyük değildir. Hesaplama süresi hızlıdır.
Verilen müşteri dizisinin en kısa bitiş süresi yukarıdaki yöntemle elde edilebilir. Böylece FTMDVRP en uygun müşteri sırasını bulmaya dönüştürülür, yapılması gereken en uygun müşteri sırasını bulmak için karınca kolonisi algoritmasını kullanmaktır.
Tüm müşterilerin tam bir permütasyonu uygulanabilir bir çözümdür. Her yinelemeli süreçte, karıncalar feromon matrisi ve ilham edilen bilgilere göre tüm müşterilerin tam permütasyonunu oluşturur ve ardından feromon matrisi güncellenir. Yani karınca kolonisi algoritmasının anahtarı feromon matrisini belirlemektir.
Diyelim ki n müşteri var, o zaman feromon matrisi bir n×(n+1) matristir. Son satırda her bir müşteriye depodan yola çıkan araç bilgileri gösterilir. Satır i, müşteriden yola çıkan aracın bilgilerini her bir müşteriye gösterir. Başlangıçta, karıncaların bir sonraki müşteriyi seçme olasılıkları eşittir. Bu nedenle, ilk feromon matrisi, eşit olasılık matrisidir.
Burada bij , i = 1,2,…, n + 1, j = 1,2,…, n, i müşterisinin çok gerisinde olan j müşterisinin feromonudur. Diyelim ki karıncalar var. t periyotlarında karıncalar müşterileri ziyaret eder ve ardından m uygun çözümler elde edilebilir. Her bir çözümün bitiş süresi Lk(t ) ise; k = 1,2,…, m , t periyodundaki artan feromon miktarı aşağıdaki gibidir.
Burada, ρ uçucu faktördür. İlham alınan bilgiler ayrıca bir n×(n+1) matrisi ile gösterilir. Son satırdaki esinlenilen bilgilerηn+1, j = A/tj , diğerleri iseηij = A/tij . tij, iki müşteri i’den j müşterisine kadar geçen süredir. tj, j müşterisinden her bir depoya kadar geçen ortalama süredir. A bir sabittir.
Tüm müşterilerin tam permütasyonunu oluşturmak için öncelikle olasılığa göre ilk müşteri seçilir. Daha sonra olasılığa göre karınca allowi’den bir sonraki müşteriyi seçer ( allowi, karıncanın i müşterisinden yola çıkarak ziyaret edebileceği müşteri kümesini temsil eder). t periyodunda i müşterisinden yola çıkan karıncanın j müşterisini ziyaret etme olasılığı aşağıdaki gibidir.
Burada, α, feromonun önem derecesidir ve β, ilham edilen bilginin önem derecesidir. α , β değeri ayarlanarak feromon ve ilham edilen bilginin göreceli önem derecesi belirlenebilir.
Seçim olasılık matrisi hesaplandıktan sonra, müşteri allowi’den rulet yöntemiyle rastgele seçilir ve ardından allowi’den silinir. Benzetmenin ardından, tüm müşterilerin tam bir permütasyonu rastgele elde edilebilir.
Karınca kolonisi algoritmasını maksimum akış algoritması ve geliştirilmiş bölme algoritması ile birleştirerek, FTMDVRP’yi çözmenin temel adımları aşağıdaki gibidir:
Adım 1: Karınca sayısı verildiğine göre m , yinelemeli periyotlar T , α , β ve ρ değerlerini belirleyin. İlk feromon matrisini bij (0) ve ilham bilgi matrisini ηij , t = 0 girin. Başlangıç feromon matrisi ve esinlenilen bilgi matrisine göre ilk karınca kolonisi elde edilebilir. Tüm müşterilerin permütasyonları oluşturulur.
Adım 2: Her bir müşteri dizisi, geliştirilmiş bölme algoritması ve maksimum akış algoritması ile hesaplanır, ardından her bir müşteri dizisinin bitiş zamanı elde edilebilir. Şu anda görünen en kısa bitiş zamanı bitiş zamanını ve en iyi yönlendirme en iyi yolculuğunu yazın.
Adım 3: Formül (3-5) ile yeni feromon matrisini hesaplayın.
Adım 4: m dizileri, güncellenmiş feromon matrisi ve esinlenilmiş bilgi matrisi ile rastgele elde edilir.
Ortak Giriş Sağlık E-Posta USS Sağlık USS Sağlık NET 2 uss yönetim e-nabız USS Yönetim giriş USS Yönetim Sistemi Yeni EBYS giriş